Synthesis and ¹⁸³W NMR Characterization of α-K₇GaW₁₁(TiO₂)O₃₉·11H₂O Heteropolyanion

Xiao Peng ZHAN², Lu MENG¹*

¹Faculty of Chemistry, Northeast Normal University, Changchun 130024 ²Department of Chemistry, Yangzhou College of Education, Yangzhou 225002

Abstract: The peroxotitanium-substituted heteropolytungstate α -K₇GaW₁₁(TiO₂)O₃₉·11H₂O has been synthesized and characterized by elemental analysis, IR, UV, ¹⁸³W NMR and electrochemistry. ¹⁸³W NMR spectrum consists of six lines with intensity ratio 2:2:1:2:22, indicated that the TiO₂ occupied the empty octahedral site of the GaW₁₁ anion forming a polyanion with Cs symmetry. The characteristic charge-transfer absorption band O₂²⁻ \rightarrow Ti at 385 nm occurs in the UV spectrum. The polarographic reduction potential of O₂²⁻ at *ca.*+0.87 V has been found.

Keywords: Peroxotitanium gallatotungstate, Keggin structure, ¹⁸³W NMR.

In recent years, the research of peroxy polyoxometalates (POMs) has attracted increasing attention because of the two reasons. First, peroxy POMs are more active as oxygenation catalysts in some oxygen transfer reactions¹⁻⁵. Second, recent research from our group and others has established that peroxy POMs are more active antiviral agents and less toxic both *in vitro* and *in vivo* than the parent metal-free POMs⁶. In order to entirely understand the properties and activities of peroxy POMs, we report here the synthesis and characterization of α -K₇GaW₁₁(TiO₂)O₃₉·11H₂O heteropolyanion. It is the first peroxy titanium substituted gallatotungstate of this subclass. K₉GaW₁₁O₃₉·xH₂O (noted as GaW₁₁) was prepared following reference⁷ and was identified by IR and polarogram.

Preparation of α-K₇GaW₁₁(TiO₂)O₃₉·11H₂O (noted as GaW₁₁TiO₂): To an 40 mL aqueous solution of GaW₁₁ (12 g, 3.72 mmol) was added 20 mL aqueous solution of Ti(SO₄)₂ (1g,4.20 mmol) dropwise. After the addition was completed, the solution was stirred for 1 h at 50°C, insoluble material was removed by filtration. To the filtrate 4 g KCl was added and stirring was continued for 5 min. Then 15 mL of 15% H₂O₂ was added, the solution changed to tangerine. After storing at 0°C for several days, the tangerine crystals appeared. The crystals were recrystallized from warm water (pH 2.0). Yield 34%. Anal. Calcd. (Found)% for α-K₇GaW₁₁ (TiO₂) O₃₉·11H₂O: K 8.4 (8.3); W 61.9 (61.6); Ti 1.5 (1.5); H₂O 6.1 (6.2); O₂²⁻ 0.98 (0.94). IR (KBr, cm⁻¹): W-O_d 946, W-O_b-W 873, W-O_c-W 767, 669, Ga-O 650, O-Ga-O 450.

 183 W NMR spectrum of GaW₁₁TiO₂ is a sharp six-line spectrum with chemical shifts -51.249, -83.230, -99.081, -118.180, -139.128 and -152.234 ppm and relative intensities of 2:2:1:2:2:2. This result strongly suggests that the TiO₂ group occupied the

Xiao Peng ZHANG et al.

empty octahedral site of the GaW₁₁ anion, forming a polyanion with Keggin structure.

Bands at 200 nm, 257 nm (c=1×10⁻⁵ mol/L, solvent H₂O), 385 nm (c=1×10⁻³mol/L, solvent H₂O) for α -K₇GaW₁₁ (TiO₂)O₃₉·11H₂O were observed in UV spectra. Compared with GaW₁₂ anion, the band at 257 nm is a characteristic band of a heteropolytungstate with Keggin structure, and should be assigned as an O_b/O_c \rightarrow W charge transfer band. The band at 200 nm is an O_d \rightarrow W charge transfer band. The band at 385 nm is the characteristic charge-transfer band of O₂²⁻ \rightarrow Ti.

Polarography was performed at pH 4.7 acetate buffer. The reduction processes of α -GaW_{11}TiO_2 anion involved the reduction of $O_2{}^{2^-} \rightarrow O^{2^-}$ at +0.87V, the reduction of $Ti^{4+} \rightarrow Ti^{3+}$ at -0.11 V and the reduction of $W^{6+} \rightarrow W^{5+}$ at -0.69V and -0.87V. The reduction of W^{6+} is similar to that of GaW_{11} anion, showing two-step two-electron reduction peaks.

Acknowledgment

This work is supported by Fok Yung Tung Education Foundation.

References

- 1. M. K. Harrup, G. S. Kim, C. L. Hill, et al., Inorg. Chem., 1998, 37, 5550.
- 2. T. Yamase, E. Ishikawa, Y. Asai, et al., J. Mol. Catal A: Chem, 1996, 114, 237.
- 3. L. Meng, J. F. Liu, Chin.J. Catal., 1996, 5, 462.
- 4. Q. J. Shan, J. Gong, S. Q. Shi, L. Y. Qu, Acta Chem. Sinica, 1998, 56, 700.
- 5. M. W. Droege, R. G. Finke, J.Mol.Catal, 1991, 69, 323.
- 6. J. T. Rhule, C. L. Hill, D. A. Judd, et al., Chem Rev., 1998, 98, 327.
- 7. C. Brevard, R. Schimpf, G. Tourne, et al., J.Am. Chem. Soc., 1983, 105, 7059.

Received 5 June, 2000 Revised 8 May, 2001